Abstract

This paper presents a novel technique for automatic change detection of the performance of gas turbines. In addition to change detection the proposed technique has the ability to perform a prognosis of measurement values. The proposed technique is deemed to be new in the field of gas turbine monitoring and forms the basic building block of a patent pending filed by the authors [1]. The technique used is called Bayesian Forecasting and is applied to Dynamic Linear Models (DLMs). The idea of Bayesian Forecasting is based on Bayes’ Theorem, which enables the calculation of conditional probabilities. In combination with DLMs (which break down the chronological sequence of the observed parameter into mathematical components like value, gradient, etc.) Bayesian Forecasting can be used to calculate probability density functions prior to the next observation, so called forecast distributions. The change detection is carried out by comparing the current model with an alternative model which mean value is shifted by a prescribed offset. If the forecast distribution of the alternative model better fits the actual observation, a potential change is detected. To determine whether the respective observation is a single outlier or the first observation of a significant change, a special logic is developed. Studies have shown that a confident change detection is possible for a change height of only 1.5 times the standard deviation of the observed signal. In terms of prognostic abilities the proposed technique not only estimates the point of time of a potential limit exceedance of respective parameters, but also calculates confidence bounds as well as probability density and cumulative distribution functions for the prognosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.