Abstract

Dissociated primary neuron culture has been the most widely used model systems for neuroscience research. Most of these primary neurons are cultured on adhesion matrix-coated surface to provide a proper environment for cell anchorage under serum-free conditions. In this study, we provide an alternative technique to promote the adhesions of these neurons using aurintricarboxylic acid (ATA), a nonpeptide compound, without surface manipulations. We first demonstrated that ATA could promote Chinese hamster ovary cell attachment and proliferation in serum-free medium in a dosage-dependent manner. We later showed that ATA significantly enhanced the attachment of the retinoic acid differentiated P19 mouse embryonal carcinoma (P19) neurons, with an optimal concentration around 30 μg/mL. A similar result was seen in primary hippocampal neurons, with an optimal ATA concentration around 15 μg/mL. Further morphological assessments revealed that the average neurite length and neuronal polarization were almost identical to that obtained using a conventional method with poly-L-lysine surface. The advantages of using the ATA treatment technique for immunochemical analysis are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.