Abstract
Alzheimer's disease (AD) is one of the important neurodegenerative diseases, in the modern aging society, it has become an issue people need to work on. Of the pathogenic factor which leads to AD, beta-amyloid (Aβ) is the most important one. It can form the senile plaque which aggregates in the neuron and interrupts the signal transmission. This research is based on the electrochemical system and screen-printed carbon electrode (SPCE) incorporated with pretreatment, electrodeposition, electrochemical impedance spectroscopy (EIS), antibody, and blocking agent. This immunosensor is applied to detect the different concentrations of Aβ. The standard curve between electrical impedance and concentration of Aβ is calculated. The specificity of the immunosensor is tested. This survey optimizes the electrodeposition condition for 4-aminobenzoic acid (4-ABA) and the parameter for antibody and blocking agents. This study fabricates a more dense, uniform, and stable film of 4-ABA. This sensor presents a range of detection from 1 fg/ml to 100 pg/ml and a limit of detection to 3.84 fg/ml. This sensor can identify the isoform of Aβ. This research shortens the fabricating time to 3.5 h. This study fabricates a label-free and low-cost immunosensor for Aβ with a short fabricating time, high stability, wide range of detection, low limit of detection, and good specificity. The impedance of the carbon printed electrodes is very high and is always measured by its current but this study provides a fabrication technique for high-efficiency carbon printed electrodes for electrochemical impedance spectroscopy sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.