Abstract
Emergency department (ED)-based injury surveillance systems across many countries face resourcing challenges related to manual validation and coding of data. This study describes the evaluation of a machine learning (ML)-based decision support tool (DST) to assist injury surveillance departments in the validation, coding, and use of their data, comparing outcomes in coding time, and accuracy pre- and postimplementations. Manually coded injury surveillance data have been used to develop, train, and iteratively refine a ML-based classifier to enable semiautomated coding of injury narrative data. This paper describes a trial implementation of the ML-based DST in the Queensland Injury Surveillance Unit (QISU) workflow using a major pediatric hospital's ED data comparing outcomes in coding time and pre- and postimplementation accuracies. The study found a 10% reduction in manual coding time after the DST was introduced. The Kappa statistics analysis in both DST-assisted and -unassisted data shows increase in accuracy across three data fields, that is, injury intent (85.4% unassisted vs. 94.5% assisted), external cause (88.8% unassisted vs. 91.8% assisted), and injury factor (89.3% unassisted vs. 92.9% assisted). The classifier was also used to produce a timely report monitoring injury patterns during the novel coronavirus disease 2019 (COVID-19) pandemic. Hence, it has the potential for near real-time surveillance of emerging hazards to inform public health responses. The integration of the DST into the injury surveillance workflow shows benefits as it facilitates timely reporting and acts as a DST in the manual coding process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.