Abstract

Abstract This article exploits a hybrid mesh-free method for coupled thermoelasticity analysis (without energy dissipation) and thermoelastic wave propagation analysis in layered FGMs subjected to shock loading. The presented hybrid mesh-free method is based on generalized finite difference (GFD) and Newmark finite difference (NFD) methods. The Green–Naghdi (GN) theory of coupled thermoelasticity is assumed to derive the governing equations for FG thick hollow cylinder. The layered FG cylinder is assumed to be under thermal shock loading. The mechanical properties of layered FG cylinder are considered to vary along the radial direction as nonlinear functions in terms of volume fraction. Thermoelastic wave propagations are studied in details at various time instants for various grading patterns of mechanical properties. The effects of nonlinear grading patterns on thermoelastic wave propagations are obtained and discussed using the presented effective mesh-free method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.