Abstract

Groundwater contamination due to municipal solid waste landfills leachate is a serious environmental threat. During recent years, the use of stable isotopes as environmental tracers to identify groundwater contamination phenomena has found application to environmental engineering. Deuterium (2H) and oxygen (18O) isotopes have successfully used to identify groundwater contamination phenomena if submitted to interactions with municipal solid waste landfills leachate, with a significant organic amount. The paper shows two case studies, in central and southern Italy, where potential contamination phenomenon of groundwater under municipal solid waste landfills occurred. In both cases, isotope compositions referred to 2H and 18O highlight a δ2H enrichment for some groundwater samples taken in wells, located near leachate storage wells. The δ2H enrichment is probably caused by methanogenesis phenomena, during which the bacteria use preferentially the hydrogen “lighter” isotope (1H), and the remaining enriched the “heavier” isotope (2H). The study of the isotope composition variation, combined with the spatial trend of some analytes (Fe, Mn, Ni) concentrations, allowed to identify interaction phenomena between the municipal solid waste landfills leachate and groundwater in both case histories. Therefore, these results confirm the effectiveness of 2H isotopes application as environmental tracer of groundwater contamination phenomena due to mixing with municipal solid waste landfills leachate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.