Abstract

In an application-layer distributed denial of service (App-DDoS) attack, zombie computers bring down the victim server with valid requests. Intrusion detection systems (IDS) cannot identify these requests since they have legal forms of standard TCP connections. Researchers have suggested several techniques for detecting App-DDoS traffic. There is, however, no clear distinction between legitimate and attack traffic. In this paper, we go a step further and propose a Machine Learning (ML) solution by combining the Radial Basis Function (RBF) neural network with the cuckoo search algorithm to detect App-DDoS traffic. We begin by collecting training data and cleaning them, then applying data normalizing and finding an optimal subset of features using the Genetic Algorithm (GA). Next, an RBF neural network is trained by the optimal subset of features and the optimizer algorithm of cuckoo search. Finally, we compare our proposed technique to the well-known k-nearest neighbor (k-NN), Bootstrap Aggregation (Bagging), Support Vector Machine (SVM), Multi-layer Perceptron) MLP, and (Recurrent Neural Network) RNN methods. Our technique outperforms previous standard and well-known ML techniques as it has the lowest error rate according to error metrics. Moreover, according to standard performance metrics, the results of the experiments demonstrate that our proposed technique detects App-DDoS traffic more accurately than previous techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.