Abstract

The Parallel Diagonal Dominant (PDD) algorithm is an efficient tridiagonal solver. In this paper, a detailed study of the PDD algorithm is given. First the PDD algorithm is extended to solve periodic tridiagonal systems and its scalability is studied. Then the reduced PDD algorithm, which has a smaller operation count than that of the conventional sequential algorithm for many applications, is proposed. Accuracy analysis is provided for a class of tridiagonal systems, the symmetric and skew-symmetric Toeplitz tridiagonal systems. Implementation results show that the analysis gives a good bound on the relative error, and the PDD and reduced PDD algorithms are good candidates for emerging massively parallel machines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.