Abstract

Supersonic spherically symmetric vacuum-arc plasma jets are considered using a two-liquid model. The jet starts from a radial distance of 3/spl times/10/sup -3/ m from the cathode surface with a radial directed electric current of 50-1000 A. Joule heating of the electron component and heat transfer to the ion component were calculated. The spatial distribution of plasma density, velocity, and electron and ion temperatures were obtained by numerically solving the equations of conservation of mass, energy, and momentum. The mean free path for the ion-ion collisions and the Mach number for the ion component of the plasma jet were also calculated as a function of the radial distance. The Knudsen number (Kn) for the ion component of plasma was calculated as a criterion of applicability of the hydrodynamical approximation. It was found that if Kn/spl Lt/1 at the starting radial distance, it remains much less than unity, in spite of the decrease in the plasma density during the radial plasma expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.