Abstract

Novel developments in artificial intelligence excel in regard to the abilities of rule-based agent-based models (ABMs), but are still limited in their representation of bounded rationality. The future state maximization (FSX) paradigm presents a promising methodology for describing the intelligent behavior of agents. FSX agents explore their future state space using “walkers” as virtual entities probing for a maximization of possible states. Recent studies have demonstrated the applicability of FSX to modeling the cooperative behavior of individuals. Applied to ABMs, the FSX principle should also represent non-cooperative behavior: for example, in microscopic traffic modeling, there is a need to model agents that do not fully adhere to the traffic rules. To examine non-cooperative behavior arising from FSX, we developed a road section model populated by agent-cars endowed with an augmented FSX decision making algorithm. Simulation experiments were conducted in four scenarios modeling various traffic settings. A sensitivity analysis showed that cooperation among the agents was the result of a balance between exploration and exploitation. We showed that our model reproduced several patterns observed in rule-based traffic models. We also demonstrated that agents acting according to FSX can stop cooperating. We concluded that FSX can be useful for studying irrational behavior in certain traffic settings, and that it is suitable for ABMs in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.