Abstract

We have evaluated the alkylation chemistry first described some years ago by Boyd et al. which is now routinely applied in a commercial instrument. We have found that the low repetitive yields observed during these analyses are due to the formation of a major side product when alkylating the C-terminal thiohydantoin. This side product, resistant to the chemical cleavage methods currently used, was characterized by NMR experiments in solution. We further demonstrate that chemical C-terminal sequence analysis of proteins using the alkylation chemistry is feasable with low picomole amounts of material. High-sensitivity C-terminal sequencing allows a complementary approach by which a protein is first subjected to N-terminal Edman degradation followed by C-terminal sequence analysis, limiting the amount of material necessary for the characterization of the protein under study. This limited C-terminal sequence information is often sufficient to solve problems that cannot be solved by applying any other analytical method commonly used today.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.