Abstract

Samples of Late Devonian/Early Mississippian New Albany Shale from the Illinois Basin, having maturities ranging from early mature to postmature, were analysed using micro-Fourier transform infrared (FTIR) spectroscopy, ImageJ processing software and scanning electron microscopic X-ray spectroscopy to explore the distribution, connectivity and chemical composition of organic matter, clay minerals, carbonate minerals and quartz, and to further test the applicability of micro-FTIR mapping to study shale heterogeneity. Each sample was analysed in planes parallel and perpendicular to the bedding to investigate anisotropy in component distribution, with a possible implication for better understanding anisotropy in porosity and permeability in organic-matter-rich shales. Our results show that for low-maturity samples, organic matter is better connected in the plane parallel to the bedding than in the plane perpendicular to the bedding. Organic matter connectivity decreases with increasing maturity as a result of kerogen transformation. Clay minerals are very well connected in both planes, whereas carbonate minerals are not abundant whilst dominantly isolated in most samples, independent of maturity. This study demonstrates that micro-FTIR mapping is a valuable tool for studying shale heterogeneity on a micrometre to millimetre scale that becomes even more powerful in combination with scanning electron microscopy techniques, which extend observations to a nanometre scale. However, to obtain meaningful and comparable results, micro-FTIR mapping requires very careful standardization, precise selection of peak heights/areas and mapping conditions (such as aperture size, scan numbers, resolution, etc.) well suited for the analysed samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.