Abstract

Interactive mobile applications attract lots of attentions recently. They utilize complex algorithms (e.g., machine learning) to provide advanced functions (e.g., object recognition), thus lead to long response time while running on mobile devices. To reduce the response time, researchers propose offloading some compute-intensive parts of mobile applications onto cloud. Existing works aim to optimize general performance (e.g., response time), but ignore the enhancement of application quality (e.g., recognition accuracy), which is also critical to user experience. In this paper, we develop AppBooster, a mobile cloud platform which boosts both general performance and application quality for interactive mobile applications. AppBooster jointly leverages the quality adaptation, computation offloading and parallel speedup to boost the comprehensive performance, which is defined by developers based on the metrics of application quality and general performance. Through combining history-based platform-learned knowledge, developer-provided information and the platform-monitored environment conditions (e.g., workload, network), AppBooster manages applications with optimal computation partitioning scheme and tunable parameter setting thus obtain high comprehensive performance. We evaluate AppBooster with an object recognition application in various network conditions and show AppBooster can significantly boost application performance and obtain 1.3 to 3.5 times better performance than existing strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.