Abstract

Soot aggregates frequently occur during combustion or pyrolysis of fuels. The radiative properties of soot aggregates at high temperature are important for understanding soot characteristics and evaluating heat transfer in combustion systems. However, few data for soot radiative properties at high temperature were available. This work experimentally investigated the apparent emissivity of the soot aggregate coating at high temperature using spectral and total hemispherical measurements. The soot aggregate coatings were formed on nickel substrates by a paraffin flame. The surface and inner morphology of the coatings were characterized by scanning electron microscope (SEM). The thickness of the coating was 30.16 μm so the contribution of the smooth nickel substrate to the apparent radiation from the coating could be neglected. The total hemispherical emissivity of the coating on the nickel substrate was measured using the steady-state calorimetric method at different temperatures. The spectral directional emissivity of the coating was measured for the wavelength of 0.38–16.0 μm at the room temperature. The measurements show that the total hemispherical emissivity decreases from 0.895 to 0.746 as the temperature increases from 438 K to 1052 K. The total hemispherical emissivity of the coating deposited on the nickel substrate is much larger than those of the nickel substrate and a nickel oxidization film. The measured spectral emissivity of the coating at the room temperature was used to theoretically calculate the total hemispherical emissivity at different temperatures by integration with respect to wavelength. The measured and calculated total hemispherical emissivities were similar, but their changes relative to temperature were completely opposite. This difference is due to the fact that the spectral emissivity of the coating is a function of temperature. The present results provide useful reference data for analyzing radiative heat transfer at high temperature of soot aggregates in combustion processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.