Abstract
The resonance 3C ([(2p5)1/23d3/2]J=1 → [2p6]J=0) to intercombination 3D ([(2p5)3/23d5/2]J=1 → [2p6]J=0) line intensity ratio of neonlike ions has been studied. The measured line intensity ratio for neonlike Xe44+ ions shows an apparent change, which is reproduced by the calculations using the relativistic configuration interaction plus many-body perturbation theory. It is clearly elucidated that the change in the 3C/3D line intensity ratio is caused by strong configuration mixing between the upper levels of the 3D and 3F ([(2p5)1/23s]J=1 → [2p6]J=0) lines. The present measurement allows us to discuss the 3C/3D line intensity ratio for the highest-Z ions hitherto, which suggests that the experiment-theory discrepancy in the 3C/3D line intensity ratio of neonlike ions diminishes with increasing atomic number Z and further trends to vanish at higher-Z ions. Furthermore, the present study provides benefits to better understand configuration mixing effect in the radiative opacity of hot plasmas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.