Abstract
A battery charging system controls and modifies the output voltage of the charging rectifier in response to differing temperature ranges of the battery. At a low range of temperatures starting at a low temperature (e.g. within a range of 0 to 25° C. to about 53° C.) the rectifier voltage decreases as the temperature increases to prevent charging current from rising as the battery temperature increases. This change is performed in accord with a linear graphical slope relating the change of charging voltage to temperature. A suitable charging voltage decrease rate may be 3 mV/° C./cell with a range of 1.5 mV/° C./cell to 5 mV/° C./cell being acceptable. Reduction of the charging voltage within this range reduces the aging effect of high temperature operation of the battery. The charging voltage applied to the battery is held at a constant value over a subsequent range of temperatures (e.g. 53° C. to 75° C.) in order to prevent accelerated grid corrosion within the battery, which normally occurs as the voltage approaches the fully charged open circuit voltage level of the battery. At attainment of a high threshold temperature at the high end of the second temperature range (e.g. 75° C.) the charging voltage level is dropped as a step function to a level below the fully charged open circuit voltage threshold of the battery to arrest the thermal runaway situation. At this level the battery is maintained at partial, but not full, state of charge by the rectifiers, and an alarm signal is generated to alert the maintenance staff to this situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.