Abstract

Previous studies of Abeta-induced neuronal damage of hippocampal cells in culture have provided strong evidence that deregulation of the Cdk5/p35 kinase system is involved in the neurodegeneration pathway. Cdk5 inhibitors and antisense probes neuroprotected hippocampal cells against the neurotoxic action of Abeta. To further investigate the mechanisms underlying the participation of Cdk5 in neuronal degeneration, the transgenic mouse containing the Swedish mutations, Tg2576, was used as an animal model. Immunocytochemical studies using anti-Abeta(1-17) antibody evidenced the presence of labeled small-clustered core plaques in the hippocampus and cortex of 18-month-old transgenic mice brains. The loss of granular cells without a compressed appearance was detected in the vicinity of the cores in the dentate gyrus of the hippocampus. Immunostaining of Tg2576 brain sections with antibodies AT8, PHF1 and GFAP labeled punctuate dystrophic neurites in and around the amyloid core. Reactive astrogliosis around the plaques in the hippocampus was also observed. Studies at the molecular level showed differences in the expression of the truncated Cdk5 activator p25 in the transgenic animal, as compared with wild type controls. However no differences in Cdk5 levels were detected, thus corroborating previous cellular findings. Interestingly, hyperphosphorylated tau epitopes were substantially increased as assessed with the AT8 and PHF1 antibodies, in agreement with the observation of a p25 increase in the transgenic animal. These observations strongly suggest that the increased exposure of Alzheimer's type tau phosphoepitopes in the transgenic mice correlated with deregulation of Cdk5 leading to an increase in p25 levels. These studies also provide further evidence on the links between extraneuronal amyloid deposition and tau pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.