Abstract

Circulating microparticles (MPs) are recently discussed as "biologically active", participating in the pathology of diseases rather than being a marker of damaging processes. It was the purpose of the present study to investigate the effects of MPs, as isolated from the blood of healthy volunteers, on the induction of apoptosis and necrosis in cultured KYSE-270 esophageal and ASPC1 pancreas carcinoma cells. MPs were obtained from the blood of 20 healthy volunteers (11 women; mean age 33.3 years). Viability, apoptosis, and necrosis were determined by flow cytometry using Annexin V/propidium iodide and tetramethylrhodamine ethyl ester perchlorate (TMRE)/propidium iodide for staining. Incubation of KYSE and ASPC1 carcinoma cells with MPs (1-20.000/μl) for 48 h reduced significantly viability of the cells, and induced apoptosis, but not necrosis. This apoptotic effect was significant at a concentration of ≥1.000 MPs/μl in both cell types. Pre-treatment of MPs with either the global caspase inhibitor ZVAD-FMK or Annexin V which blocks phosphatidyl serine in the outer membrane of MPs with high affinity, almost abolished MP-induced apoptosis. A specific enzyme assay as well Western blot analysis confirmed the presence (activity, protein) of the apoptotic enzyme caspase-3 in MPs. Incubation of carcinoma cells with MPs (20.000/μl) resulted in an increase in caspase-3 protein in carcinoma cells; this increase could be prevented by pre-treatment of MPs with Annexin V. It is suggested that MPs induce concentration-dependent apoptosis in KSYE esophageal and ASPC1 pancreas carcinoma cells in vitro by transferring caspases into target cells. This process probably requires a target cell-MP interaction, and membrane-bound anionic phosphatidyl serine may be involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.