Abstract
The human apolipoprotein L gene family encodes the apolipoprotein L1–6 (APOL1–6) proteins, which are effectors of the innate immune response to viruses, bacteria and protozoan parasites. Due to a high degree of similarity between APOL proteins, it is often assumed that they have similar functions to APOL1, which forms cation channels in planar lipid bilayers and membranes resulting in cytolytic activity. However, the channel properties of the remaining APOL proteins have not been reported. Here, we used transient overexpression and a planar lipid bilayer system to study the function of APOL proteins. By measuring lactate dehydrogenase release, we found that APOL1, APOL3, and APOL6 were cytolytic, whereas APOL2, APOL4, and APOL5 were not. Cells expressing APOL1 or APOL3, but not APOL6, developed a distinctive swollen morphology. In planar lipid bilayers, recombinant APOL1 and APOL2 required an acidic environment for the insertion of each protein into the membrane bilayer to form an ion conductance channel. In contrast, recombinant APOL3, APOL4, and APOL5 readily inserted into bilayers to form ion conductance at neutral pH, but required a positive voltage on the side of insertion. Despite these differences in membrane insertion properties, the ion conductances formed by APOL1-4 were similarly pH-dependent and cation-selective, consistent with conservation of the pore-lining region in each protein. Thus, despite structural conservation, the APOL proteins are functionally different. We propose that these proteins interact with different membranes and under different voltage and pH conditions within a cell to effect innate immunity to different microbial pathogens.
Highlights
The human apolipoprotein L gene family encodes the apolipoprotein L1–6 (APOL1–6) proteins, which are effectors of the innate immune response to viruses, bacteria and protozoan parasites
We found a high degree of structural similarity among all APOL proteins, with APOL1 through APOL4 more similar than APOL5 and APOL6 (Fig. 1B)
To characterize the macroscopic conductance formed by the APOL proteins, in terms of pH dependence and ion selectivity, we focused on APOL1–4, due to difficulty purifying APOL5 and the tendency of APOL6 to destabilize the bilayer
Summary
The human apolipoprotein L gene family encodes the apolipoprotein L1–6 (APOL1–6) proteins, which are effectors of the innate immune response to viruses, bacteria and protozoan parasites. In order to understand the function of these proteins, we compared the cytotoxic effects of APOL proteins in human cells and their ability to generate an ion conductance in planar lipid bilayers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.