Abstract

A polymerase chain reaction-gold magnetic nanoparticles lateral flow assay (PCR-GoldMag LFA) has been developed via integrating multiplex amplification refractory mutation system PCR (multi-ARMS-PCR) with GoldMag-based LFA for the visual detection of single-nucleotide polymorphisms (SNPs). This assay was applied to genotype Apolipoprotein E (ApoE). ApoE genotyping is important due to the predictive value for the development of coronary artery disease and Alzheimer's disease. The method requires two steps: i) Simultaneous amplifications of the two polymorphic codons (ApoE 158 and 112), performed in separated reactions using multi-ARMS-PCR; and ii) detection of the wild-type and mutant PCR products via dual immunoreactions, which can be performed in ~5 min. Within two LFAs, anti-digoxin antibody-conjugated GoldMag probes bind digoxin-labeled wild-type PCR products, and anti-fluorescein isothiocyanate (FITC) antibody-conjugated GoldMag probes bind FITC-labeled mutant PCR products. All PCR products are biotin labeled and are detected by streptavidin-coated regions on the LFA strip, resulting in a red color. The current approach is capable of detecting the SNPs of ApoE in ~1.5 h, with a broad detection range from 10–1,000 ng of genomic DNA. Thus, the present protocol may facilitate simple, fast and cost-effective screening for important SNPs, as demonstrated by the evaluation of the prevalence of ApoE variants in a Han Chinese cohort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.