Abstract
The vertebrate retina, which is part of the central nervous system, is a window into the brain. The present study investigated the extent to which the retina can be used as a model for studying the pathological effects of apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for Alzheimer's disease (AD). Immunohistochemical studies of retinas from young (4 months old) apoE4-targeted replacement mice and from corresponding mice which express the AD benign apoE3 allele, revealed that the density of the perikarya of the different classes of retinal neurons was not affected by apoE4. In contrast, the synaptic density of the retinal synaptic layers, which was assessed immunohistochemically and by immunoblot experiments, was significantly lower in the apoE4 than in the apoE3 mice. This was associated with reduced levels of the presynaptic vesicular glutamatergic transporter, VGluT1, but not of either the GABAergic vesicular transporter, VGaT, or the cholinergic vesicular transporter, VAChT, suggesting that the glutamatergic nerve terminals are preferentially affected by apoE4. In contrast, the post synaptic scaffold proteins PSD-95 and Gephyrin, which reside in excitatory and inhibitory synapses, respectively, were both elevated, and their ratio was not affected by apoE4. Electroretinogram (ERG) recordings revealed significant attenuation of mixed rod-cone responses in dark-adapted eyes of apoE4 mice. These findings suggest that the reduced ERG response in the apoE4 mice may be related to the observed decrease in the retinal nerve terminals and that the retina could be used as a novel model for non-invasive monitoring of the effects of apoE4 on the CNS.
Highlights
Alzheimer’s Disease (AD), the most prevalent form of dementia in the elderly, is characterized by cognitive decline and by the occurrence of brain senile plaques and neurofibrillary tangles (NFT), as well as by synaptic and neuronal loss [1,2,3]
Quantification of these results revealed reduced levels of VGluT1 staining in the inner plexiform layer (IPL) and outer plexiform layer (OPL), and elevated levels of VGaT staining in the IPL of the apolipoprotein E4 (apoE4) retina
Immunohistochemical studies revealed that the overall structure of the retina and the corresponding density of the perikarya of the different classes of retinal neurons were not affected by apoE4
Summary
Alzheimer’s Disease (AD), the most prevalent form of dementia in the elderly, is characterized by cognitive decline and by the occurrence of brain senile plaques and neurofibrillary tangles (NFT), as well as by synaptic and neuronal loss [1,2,3]. Synaptic dysfunction and loss is the earliest histological neuronal pathology in AD [4,5,6,7] and is apparent in mild cognitive impaired (MCI) individuals prior to their conversion to clinical AD [8]. AD is not a single neurotransmitter disease, it is associated with distinct and specific neuronal and synaptic impairments. The mechanisms underlying synaptic degeneration in AD and its neuronal specificity are not fully understood
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.