Abstract

Enterovirus 71 (EV71), a single-stranded positive-sense RNA virus, is the causative agent of hand, foot, and mouth disease (HFMD), for which no effective antiviral therapy is currently available. Apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or A3G) is a cytidine deaminase that inhibits the replication of several viruses, such as human immunodeficiency virus-1, hepatitis B virus and hepatitis C virus. In our efforts toward understanding the antiviral spectrum and mechanism of A3G, we found that ectopic expression of A3G inhibited EV71 replication, whereas knockdown of endogenous A3G expression promoted EV71 replication. Moreover, inhibition of EV71 replication by IMB-Z, a N-phenylbenzamide derivative, is associated with increased levels of intracellular A3G, but reducing the level of A3G by RNA interference diminished the antiviral activity of IMB-Z. Mechanistically, we obtained evidence suggesting that the cytidine deaminase activity is not required for A3G inhibition of EV71 replication. Instead, we demonstrated that A3G can interact with viral 3D RNA-dependent RNA polymerase (RdRp) and viral RNA and be packaged into progeny virions to reduce its infectivity. Taken together, our results indicate that A3G is a cellular restriction factor of EV71 and mediator of the antiviral activity of IMB-Z. Pharmacological induction and/or stabilization of A3G is a potential therapeutic approach to treat diseases caused by EV71 infection, such as HFMD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.