Abstract

Apigenin, a dietary plant-flavonoid has shown anti-proliferative and anticancer properties, however the molecular basis of this effect remains to be elucidated. We studied the molecular events of apigenin action in human prostate cancer cells. Treatment of LNCaP and PC-3 cells with apigenin causes G0-G1 phase arrest, decrease in total Rb protein and its phosphorylation at Ser780 and Ser807/811 in dose- and time- dependent fashion. Apigenin treatment caused increased phosphorylation of ERK1/2 and JNK1/2 and this sustained activation resulted in decreased ELK-1 phosphorylation and c-FOS expression thereby inhibiting cell survival. Use of kinase inhibitors induced ERK1/2 phosphorylation, albeit at different levels, and did not contribute to cell cycle arrest in comparison to apigenin treatment. Despite activation of MAPK pathway, apigenin caused a significant decrease in cyclin D1 expression that occurred simultaneously with the loss of Rb phosphorylation and inhibition of cell cycle progression. The reduced expression of cyclin D1 protein correlated with decrease in expression and phosphorylation of p38 and PI3K-Akt, which are regulators of cyclin D1 protein. Interestingly, apigenin caused a marked reduction in cyclin D1, D2 and E and their regulatory partners CDK 2, 4 and 6, operative in G0-G1 phase of the cell cycle. This was accompanied by a loss of RNA polymerase II phosphorylation, suggesting the effectiveness of apigenin in inhibiting transcription of these proteins. This study provides an insight into the molecular mechanism of apigenin in modulating various tyrosine kinases and perturbs cell cycle progression, suggesting its future development and use as anticancer agent in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.