Abstract

Antiviral responses are successively induced in virus-infected animals, and include primary innate immune responses such as type I interferon (IFN) and cytokine production, secondary natural killer (NK) cell responses, and final cytotoxic T lymphocyte (CTL) responses and antibody production. The endosomal Toll-like receptors (TLRs) and cytoplasmic RIG-I-like receptors (RLRs), which recognize viral nucleic acids, are responsible for virus-induced type I IFN production. RLRs are expressed in most tissues and cells and are primarily implicated in innate immune responses against various viruses through type I IFN production, whereas nucleic acid-sensing TLRs, TLRs 3, 7, 8 and 9, are expressed on the endosomal membrane of dendritic cells (DCs) and play distinct roles in antiviral immunity. TLR3 recognizes viral double-stranded RNA taken up into the endosome and serves to protect the host against viral infection by the induction of a range of responses including type I IFN production and DC-mediated activation of NK cells and CTLs, although the deteriorative role of TLR3 has also been reported in some virus infections. Here, we review the current knowledge on the role of TLR3 during viral infection, and the current understanding of the TLR3-signalling cascade that operates via the adaptor protein TICAM-1 (also called TRIF).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.