Abstract
Respiratory viral infections trigger immune and inflammatory responses that can be associated with excessive oxidative stress, glutathione (GSH) depletion, and a cytokine storm that drives virus-induced cell/tissue damage and severe disease. Erdosteine is a thiol-based drug with proven mucolytic, anti-inflammatory, antioxidant, and antibacterial properties, but less is known about its antiviral effects. We performed in vitro studies to investigate the antiviral and anti-inflammatory activity of erdosteine in A549-hACE2 human lung epithelial cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or respiratory syncytial virus (RSV) and in Caco-2 human colon carcinoma cells infected with influenza A virus (H1N1). The cells were treated with different concentrations of erdosteine or its active metabolite 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MET-1) before and after viral infection. The viral replication/load in the cell culture supernatants was measured by real-time quantitative polymerase chain reaction (RT-qPCR) assay and digital droplet PCR. The gene expression of innate immune response signaling pathways and oxidative stress was analyzed by reverse transcription PCR custom-array. The results showed that erdosteine and its active metabolite, at concentrations consistent with an approved therapeutic human dosage, were not directly cytotoxic and had significant antiviral effects in cells pre-infected with SARS-CoV-2, RSV, and H1N1. The transcriptome analysis showed that erdosteine activated innate immune responses by stimulating overexpression of type I interferon and inflammasome pathways and modulated oxidative stress by inducing the modulation of oxidative stress and GSH pathways. These findings suggest that erdosteine may be a useful treatment for respiratory viral infections.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have