Abstract
Developing nanomaterials-based antimicrobial agents has shown a widespread promise. In this study, silver nanoparticle-modified graphene oxide (GO-AgNPs) nanocomposites were self-assembled via interfacial electrostatic force. By using the porcine reproductive and respiratory syndrome virus (PRRSV) as a pattern, the antiviral effect of the as-prepared GO-AgNPs nanocomposites on the replication of virus was investigated. The results indicated that exposure with GO-AgNPs nanocomposites could obviously suppress PRRSV infection. It was found that GO-AgNPs nanocomposites exhibited a better inhibitory effect compared with AgNPs and GO. By selecting the porcine epidemic diarrhea virus (PEDV) as a contrast virus, GO-AgNPs nanocomposites were proven to have a broad antiviral activity. Mechanism studies showed that GO-AgNPs nanocomposites might prevent PRRSV from entering the host cells, with 59.2% inhibition efficiency. Meanwhile, GO-AgNPs nanocomposite treatment enhances the production of interferon-α (IFN-α) and IFN-stimulating genes (ISGs), which can directly inhibit the proliferation of virus. Taken together, this study reports a new type of antiviral agent and provides a promising pharmaceutical agent for treating infection by the highly pathogenic PRRSV. Moreover, it may provide novel ideas for the research and development of antiviral formulations based on nanocomposites and extend their applications in biological systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.