Abstract

BackgroundThe goal of this study was to determine the effects of a selective Cyclooxygenase (COX)-2 inhibitor on the inhibition of tumor growth and pulmonary metastasis in a Lewis Lung Carcinoma (LLC) animal model.MethodsFor immunoblot analysis of COX-2 and PGE2, cells were treated with irradiation in the presence or absence of celecoxib. The right thighs of male, 6-week old C57/BL mice were subcutaneously injected with 1 × 106 LLC cells. The animals were randomized into one of six groups: (1) no treatment, (2) 25 mg/kg celecoxib daily, (3) 75 mg/kg celecoxib daily, (4) 10 Gy irradiation, (5) 10 Gy irradiation plus 25 mg/kg celecoxib daily, and (6) 10 Gy irradiation plus 75 mg/kg celecoxib daily. Mice were irradiated only once, and celecoxib was administered orally. Mice were irradiated with 4-MV photons once the tumor volume of the control group reached 500 mm3. All mice were sacrificed when the mean tumor volume of control animals grew to 4000 mm3. The left lobes of the lungs were extracted for the measurement of metastatic nodules.ResultsIrradiation resulted in a dose-dependent increase in PGE2 production. PGE2 synthesis decreased markedly after treatment with celecoxib alone or in combination with irradiation. Compared to mice treated with low dose celecoxib, mean tumor volume decreased significantly in mice treated with a high dose of celecoxib with or without irradiation. Mice treated with a high dose celecoxib alone, with irradiation alone, or with irradiation plus celecoxib had markedly fewer metastatic lung nodules than controls. The mean metastatic area was the smallest for mice treated with irradiation plus a high dose celecoxib.ConclusionOral administration of high dose celecoxib significantly inhibited tumor growth, as compared to a low dose treatment. Radiotherapy in combination with high dose celecoxib delayed tumor growth and reduced the number of pulmonary metastases to a greater extent than celecoxib or radiotherapy alone.

Highlights

  • The goal of this study was to determine the effects of a selective Cyclooxygenase (COX)-2 inhibitor on the inhibition of tumor growth and pulmonary metastasis in a Lewis Lung Carcinoma (LLC) animal model

  • We evaluated the effect of a selective COX-2 inhibitor as a radiation sensitizer in order to inhibit tumor growth and pulmonary metastasis in a Lewis Lung Carcinoma (LLC) animal model

  • Effect of the Selective COX-2 Inhibitor on LLC Cells LLC cell COX-2 protein expression was confirmed by western blot analysis, which showed constitutive COX-2 expression (Figure 1)

Read more

Summary

Introduction

The goal of this study was to determine the effects of a selective Cyclooxygenase (COX)-2 inhibitor on the inhibition of tumor growth and pulmonary metastasis in a Lewis Lung Carcinoma (LLC) animal model. Combining chemotherapeutic agents concurrently with radiotherapy has improved tumor control and survival. This combined approach increases systemic and local toxicities during radiotherapy. Because of the increased toxicity, the overall treatment duration of radiotherapy, in addition to chemotherapy, is usually prolonged when compared to the treatment time of radiotherapy alone [3,4]. This increased duration may decrease its efficacy for tumor control within the radiation field

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.