Abstract

Systemic injections of cholecystokinin (CCK), a “gut–brain” peptide, have been shown to modulate brain dopamine function and produce neuroleptic-like effects on such dopamine-regulated behaviors as locomotor activity. However, clinical trials of CCK agonists in schizophrenia patients showed mixed results. To re-examine the antipsychotic potential of CCK-based treatments, we examined systemic injections of CCK analogs in an animal model with strong face and construct validity for sensorimotor-gating deficits seen in schizophrenia patients and with strong predictive validity for antipsychotic drug activity. Prepulse inhibition (PPI) occurs when a weak acoustic lead stimulus (“prepulse”) inhibits the startle response to a sudden loud sound (“pulse”). PPI is significantly reduced in schizophrenia patients and rats treated with dopamine agonists. Antipsychotics reverse decreased PPI in rats to a degree highly correlated with their clinical efficacy. Subcutaneous (SC) injections of caerulein (10 μg/kg) a mixed CCKA/B agonist, partially reversed amphetamine-induced reduction of PPI; whereas, SC haloperidol (0.5 mg/kg) totally reversed amphetamine-induced disruption of PPI. Caerulein’s effect on PPI was blocked by pretreatment with a CCKA antagonist (devazepide) but not a CCKB antagonist (L-365,260). CCK-4, a preferential CCKB agonist, had no significant effect on PPI. These results suggest that caerulein produces a weak neuroleptic-like effect on PPI that is mediated by stimulation of CCKA receptors. Possible circuities in this effect are discussed. In a separate experiment, SC caerulein produced to a more potent neuroleptic-like profile on amphetamine-induced hyperlocomotion, suggesting that selection of preclinical paradigms may be important in evaluating the antipsychotic potential of CCK-based treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.