Abstract

The physiological effects of thallium(I)-acetate on the duckweed Lemna minor after 1-, 4-, 7- and 14-d exposure were analyzed. High bioaccumulation of Tl (221 mg kg −1 dry wt at 2.0 μM Tl-acetate) caused an inhibition of plant growth. After 14-d exposure, 0.2, 0.5, 1.0 and 2.0 μM Tl-acetate reduced the frond-number growth rate by 21.1%, 39.4%, 66% and 83.1%, respectively. Tl-acetate also induced a modulation of the antioxidative response by depleting the ascorbate content and affecting the antioxidative enzymes activities. Superoxide dismutase showed a continuous increase of activity (31–67%) after Tl-acetate exposure. Other antioxidative enzymes displayed a biphasic response to both the concentration and the exposure period. Exposure up to 7 d decreased the catalase activity (up to 40%) in plants treated with higher Tl-acetate concentrations. In contrast, 14-d exposure increased the activity of the enzyme (≥90%). Short-term exposure increased ascorbate peroxidase activity (13–41%), except in plants exposed to the highest Tl-acetate concentration. However, 14-d exposure decreased the enzyme activity at all concentrations tested (38–60%). Although pyrogallol peroxidase activity increased (up to 26%) during 4-d exposure, longer exposures to the highest two concentrations decreased the activity of the enzyme (25–48%). In general, short-term exposure to Tl-acetate activated the antioxidant capacity, which resulted in recovery of the frond-number growth rates in Tl-treated plants. In spite of the activation of the antioxidative response during short-term exposure, higher Tl-acetate concentrations increased the hydrogen peroxide level (up to 45%) and induced marked oxidative damage to lipids, proteins and DNA. Longer exposure induced a decline of the antioxidative response, and plants showed the symptoms of oxidative damage even at lower Tl-acetate concentrations. The genotoxic effect was evaluated by an alkaline version of the cellular and acellular Comet assay, which revealed an indirect genotoxic effect of Tl-acetate, suggesting oxidatively induced damage to DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.