Abstract

Small-molecule antioxidants perform poorly in vivo in combating oxidative stress because of their low bioavailability. Water-soluble polymeric antioxidants can overcome the limitations of small molecular antioxidants (instability, poor water solubility, fast metabolism, etc.), but there are only a few efficient synthesis methods to prepare safe and effective polymeric antioxidants. In this study, we develop a series of antioxidant polymers containing ferrocene and/or indole moieties through the Ugi four-component reaction and simple free radical polymerization. These polymers are screened using different criteria to find a biocompatible antioxidative polymer that effectively inhibits the lethal and teratogenic effects of UV-induced oxidative damage on zebrafish embryos. This study identifies a strategy to use antioxidative polymers in vivo, demonstrates the value of multicomponent reactions in interdisciplinary areas, and provides the underlying insights to guide the design of antioxidant polymeric biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.