Abstract

The emergence of new technologies has led to the discovery of the biological properties of nanoparticles through green approach. In the present investigation, we report the potential antibacterial, antioxidant, and anti-diabetic properties of copper nanoparticle (CuNPs) synthesized by reducing 3mM copper acetate solution with aqueous leaf extract of Cocculus hirsutus. A colour change from deep brown to dark greenish brown indicated the formation of copper nanoparticles. The so-formed CuNPs were characterized by employing UV spectroscopy, FTIR, SEM, and EDX analyses which described sheet-like structure morphology having typical size of 63.46nm. Later, the synthesized CuNPs efficiency was evaluated against bacterial pathogens, and was found highly toxic to B. subtilis and S. aureus strains. The synthesized CuNPs were examined through H2O2 and PMA assays which demonstrated the highest free radical scavenging activity. Besides, the resulted CuNPs revealed the higher anti-diabetic efficacy in both the [Formula: see text]-amylase and [Formula: see text] -glucosidase inhibition assays (64.5% ± 0.11 and 68.5% ± 0.11, respectively). Finally, our findings report that C. hirsutus can be exploited as a source for green synthesis of CuNPs, having potent in vitro antioxidant, antibacterial, and anti-diabetic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.