Abstract
Although the effectiveness of zero-valent iron (ZVI) and zero-valent manganese (ZVMn) in heavy metal removal is well-established, their combined synergistic potential for antimony (Sb) remediation from wastewater has remained largely unexplored. Addressing this gap, this study introduced a magnetic zero-valent iron-manganese bimetallic material (ZVIM), synthesized via the borohydride reduction method, to investigate its capabilities and underlying mechanisms for Sb reduction and adsorption. The ZVIM, characterized by a high specific surface area of 220 m²/g, exhibited a high adsorption capacity (614.6 mg/g for Sb(III) and 241.7 mg/g for Sb(V)), facilitating over 96.7 % removal for both Sb(III) and Sb(V). The adsorption conformed to the pseudo-second-order kinetic model, and the isotherm data aligned with the Freundlich model, indicative of a heterogeneous adsorption process. The removal of Sb(III) predominantly occurred via surface complexation and electrostatic adsorption to the positively charged ZVIM surface, accompanied by a partial oxidation of Sb(III) to Sb(V). In contrast, the elimination of Sb(V) was primarily facilitated through surface complexation mechanism, encompassing both reduction and electrostatic adsorption. The outcomes of this study shed light on the intricate interactions between Sb species and the ZVIM, revealing the material as a promising candidate for the efficacious removal of Sb from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.