Abstract

In this paper, the structural, electronic, mechanical and optical properties of antimonene-bismuthene Van-der Waals heterostructure (Sb-Bi HS) were calculated based on the first principle density functional theory. We explored different stacks of Sb-Bi HS to find the most and the least stable staking for this heterostructure. At the GGA level of theory, the most stable model is a semiconductor with an indirect band gap of 159 meV. However, when the spin-orbit (SO) interaction is considered, the VBM and CBM touch the Fermi level and the HS becomes a semimetal. Our results also show that the electronic properties of the HS are robust against the external electric field and biaxial strain. Young modulus was calculated as 64.3N/M which predicts this HS as a resistant material against being stretched or compressed. The calculated optical properties, similar to monolayer antimonene, are completely dependent on the polarization of incident light and differ when parallel or perpendicular polarization is considered. Moreover, the absorption coefficient for perpendicular polarization in the visible region is significantly increased in comparison with the monolayer antimonene. High structural stability, electronic and mechanical robustness against electric field and strain, along with polarization-dependent optical properties of this HS, promise for its applications in beam splitters and nano-scale mirrors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.