Abstract
Waterborne Escherichia coli are a major reservoir of antimicrobial resistance (AMR), including but not limited to extended-spectrum beta-lactamase (ESBL) and Klebsiella pneumoniae carbapenemase (KPC) mechanisms. This study quantified and described ESBL- and KPC-producing E. coli in Northern Colorado from sewer water, surface water, and influent and effluent wastewater treatment sources. Total detected bacteria and E. coli abundances, and the percentages that contain ESBL and/or KPC, were compared between water sources. Seventy E. coli isolates from the various waters had drug resistance validated with a panel of 17 antibiotics using a broth microdilution assay. The diverse drug resistance observed across E. coli isolates was further documented by polymerase chain reaction of common ESBL genes and functional relatedness by PhenePlate assay-generated dendrograms (n=70). The total E. coli abundance decreased through the water treatment process as expected, yet the percentages of E. coli harboring ESBL resistance were increased (1.70%) in surface water. Whole-genome sequencing analysis was completed for 185 AMR genes in wastewater E. coli isolates and confirmed the presence of diverse AMR gene classes (e.g., beta-lactams and efflux pumps) in isolate genomes. This study completed surveillance of AMR patterns in E. coli that reside in environmental water systems and suggests a role for integrating both phenotypic and genotypic profiling beyond ESBL and KPC mechanisms. AMR screening via multiple approaches may assist in the prevention of drug-resistant E. coli spread from waters to animals and humans.
Highlights
Antimicrobial-resistant (AMR) bacteria are ubiquitous in environmental waters, including oceans [1, 2], rivers [3, 4], lakes [5, 6], and sewer water [7, 8], and have even been recorded in drinking water sources [9,10,11,12]
It was hypothesized that Klebsiella pneumoniae carbapenemase (KPC) and extendedspectrum beta-lactamase (ESBL) screening of environmental E. coli would be predictive of additional multidrug resistance mechanisms in these isolates, and that genotypic and phenotypic analysis would reveal patterns in drug resistance based on date and location of the water sources sampled. e cross-validation of the methodologies reported illustrates the depth by which multiple analysis platforms can be integrated to establish AMR profiles of E. coli across environmental waters
Total detected bacterial and E. coli abundances across environmental waters tested in 17 independent sampling events are depicted in Table 1. e negative control plates included for each filtered sample did not contain microbial growth
Summary
Antimicrobial-resistant (AMR) bacteria are ubiquitous in environmental waters, including oceans [1, 2], rivers [3, 4], lakes [5, 6], and sewer water [7, 8], and have even been recorded in drinking water sources [9,10,11,12]. A survey of AMR E. coli in the Netherlands showed 17.1% of ESBL E. coli isolated from river water and wastewater were reported as pathogenic, and of those pathogenic strains, approximately 84% exhibited resistance in up to three drug classes including beta-lactams, tetracyclines, and aminoglycosides [18]. E objective of this study was to screen environmental water samples for AMR E. coli, to understand the phenotypic and genotypic resistance profiles of E. coli isolates, and to examine clonal relatedness of AMR E. coli strains across water systems. It was hypothesized that KPC and ESBL screening of environmental E. coli would be predictive of additional multidrug resistance mechanisms in these isolates, and that genotypic and phenotypic analysis would reveal patterns in drug resistance based on date and location of the water sources sampled. It was hypothesized that KPC and ESBL screening of environmental E. coli would be predictive of additional multidrug resistance mechanisms in these isolates, and that genotypic and phenotypic analysis would reveal patterns in drug resistance based on date and location of the water sources sampled. e cross-validation of the methodologies reported illustrates the depth by which multiple analysis platforms can be integrated to establish AMR profiles of E. coli across environmental waters
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.