Abstract

BackgroundSurgical site infections (SSIs) are difficult to treat and are associated with substantially longer hospital stay, higher treatment cost, morbidity and mortality, particularly when the etiological agent is multidrug-resistant (MDR). To address the limited data in Uganda on SSIs, we present the spectrum of bacteria isolated from hospitalized patients, the magnitude and impact of MDR bacterial isolates among patients with SSIs.MethodsA descriptive cross sectional study was conducted from September 2011 through April 2012 involving 314 patients with SSIs in the obstetrics & gynecology, general surgery and orthopedic wards at Mulago National Hospital in Kampala, Uganda. Wound swabs were taken and processed using standard microbiological methods. Clinico-demographic characteristics of patients were obtained using structured questionnaires and patients’ files.ResultsOf the 314 enrolled patients with SSIs (mean age 29.7 ±13.14 years), 239 (76.1%) were female. More than half of the patients were from obstetrics and gynecology (62.1%, 195/314). Of 314 wound swabs taken, 68.8% (216/314) were culture positive aerobically, yielding 304 bacterial isolates; of which 23.7% (72/304) were Escherichia coli and 21.1% (64/304) were Staphylococcus aureus. More than three quarters of Enterobacteriaceae were found to be extended spectrum beta lactamase (ESBL) producers and 37.5% of S. aureus were Methicillin resistant S. aureus (MRSA). MDR occurred in 78.3% (238/304) of the isolates; these were more among Gram-negative bacteria (78.6%, 187/238) compared to Gram-positive bacteria (21.4%, 51/238), (p-value < 0.0001, χ2 = 49.219). Amikacin and imepenem for ESBL-producing Enterobacteriacea and vancomycin for MRSA showed excellent performance except that they remain expensive drugs in Uganda.ConclusionMost SSIs at Mulago National Hospital are due to MDR bacteria. Isolation of MRSA and ESBL-producing Enterobacteriaceae in higher proportions than previously reported calls for laboratory guided SSIs- therapy and strengthening of infection control surveillance in this setting.

Highlights

  • Surgical site infections (SSIs) are difficult to treat and are associated with substantially longer hospital stay, higher treatment cost, morbidity and mortality, when the etiological agent is multidrug-resistant (MDR)

  • The most predominant bacteria in hospital-acquired SSIs are Staphylococcus aureus, Enterococcus spp, Pseudomonas aeruginosa, Escherichia coli, and other Enterobacteriaceae; of these, single bacterial isolates are common whereas 9.0% to 27.0% of bacterial isolates from different surgical sites are attributed to polymicrobial [7,8,9,11]

  • Substantial rates of resistance to oxacillin, erythromycin and clindamycin reported for S. aureus, ranged from 10-60% [8,9,15,16] whereas vancomycin, amikacin, piperacillin-tazobactam and imepenem showed resistant rates of less than 25% [17,18]

Read more

Summary

Introduction

Surgical site infections (SSIs) are difficult to treat and are associated with substantially longer hospital stay, higher treatment cost, morbidity and mortality, when the etiological agent is multidrug-resistant (MDR). The most predominant bacteria in hospital-acquired SSIs are Staphylococcus aureus, Enterococcus spp, Pseudomonas aeruginosa, Escherichia coli, and other Enterobacteriaceae; of these, single bacterial isolates are common whereas 9.0% to 27.0% of bacterial isolates from different surgical sites are attributed to polymicrobial [7,8,9,11] These infections pose therapeutic challenges and are associated with substantially longer duration of hospital stay, increased hospital cost, higher morbidity and mortality [5,12], when the agents are Methicillin resistant S. aureus (MRSA), Extended spectrum beta lactamase (ESBL) producing Enterobacteriaceae and/or other agents collectively referred to as multidrug-resistant (MDR) [11,13,14]. Substantial rates of resistance to oxacillin, erythromycin and clindamycin reported for S. aureus, ranged from 10-60% [8,9,15,16] whereas vancomycin (for S. aureus and other Gram-positive bacteria), amikacin, piperacillin-tazobactam and imepenem (for E. coli, P. aeruginosa and other Gramnegative bacteria) showed resistant rates of less than 25% [17,18].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.