Abstract

Biocides are widely used for preventing the spread of microbial infections and fouling of materials. Since their use can build up microbial resistance and cause unpredictable long-term environmental problems, new biocidal agents are required. In this study, we demonstrate a concept in which an antimicrobial polymer is deactivated by the cleavage of a single group. Following the satellite group approach, a biocidal quaternary ammonium group was linked through a poly(2-methyloxazoline) to an ester satellite group. The polymer with an octyl-3-propionoate satellite group shows very good antimicrobial activity against Gram-positive bacterial strains. The biocidal polymer was also found to have low hemotoxicity, resulting in a high HC50 /MIC value of 120 for S. aureus. Cleaving the ester satellite group resulted in a 30-fold decrease in antimicrobial activity, proving the concept valid. The satellite group could also be cleaved by lipase showing that the antimicrobial activity of the new biocidal polymers is indeed bioswitchable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.