Abstract

Peanut suffer from a number of fungal and bacterial pathogens, while plant endophytes were considered excellent candidates as biocontrol agents. In this study, the peanut endophytic bacterium LDO2 was evaluated for the potential of peanut pathogens inhibition and growth-promotion, and the genetic mechanisms were explored by genome mining. Strain LDO2 significantly inhibited the growth of peanut pathogenic fungi and pathogenic bacteria, and specifically, it showed pronounced inhibition on mycelia growth of Aspergillus flavus mycelia and caused mycelial deformity. Gene clusters responsible for antifungal metabolites (fengycin, surfactin, bacilysin) and antibacterial metabolites (butirosin, bacillaene, difficidin, macrolactin, surfactin, bacilysin) were identified. Strain LDO2 also exhibited several growth-promoting related features including phosphate solubilization, siderophore production and growth promotion of peanut root. Genes associated with plant growth promotion were also identified and analyzed, as well as genes related to secreted proteins. These findings suggested that this peanut endophyte could be a potential biocontrol agent in peanut production and a source of antimicrobial compounds for further exploitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.