Abstract

Pastoral communities in Kenya have used smoke from specific herbs as a technique of disinfecting milk-handling containers, preserving milk and to impart a characteristic desired flavour to raw camel milk. The smoking is expected to extend the shelf life of the camel milk, despite the high environmental temperatures (>28 °C). The aim of this study was to determine the antimicrobial effect of smoke on plastic milk-handling container surfaces and determine the efficacy of smoking as a preservation method. Smoked plastic milk-handling containers (n = 25) were conveniently collected from pastoral community households in Isiolo County, Kenya. Two containers were prepared by either washing and rinsing using hot water to be the negative control or rinsing and disinfecting using a chlorine-based agent to be the positive control. The inner surfaces of the containers were aseptically swabbed and analysed for total viable count (TVC), total coliform count (TCC), and lactic acid bacteria (LAB). The TVC from the smoked containers was 4.64 ± 0.43 log10 cfu/cm2 while the TCC was 4.00 ± 0.66 log10 cfu/cm2 and the LAB were 3.75 ± 0.59 log10 cfu/cm2, and those of the negative control (plain-water-washed non-smoked plastic container) were 5.99 ± 1.03, 5.07 ± 0.91, and 4.81 ± 0.81 log10 cfu/cm2 for TVC, TCC, and LAB, respectively. The mean microbial load of milk bulked in smoked containers was 5.10 ± 0.96, 3.61 ± 2.13, and 3.84 ± 2.22 log10 cfu/ml for TVC, TCC, and LAB, respectively, while the mean microbial load of milk bulked in chlorine-disinfected containers was 5.23 ± 1.11, 2.46 ± 2.18, and 2.04 ± 1.35 log10 cfu/ml for TVC, TCC, and LAB, respectively. The common types of microbes were Gram-negative rods (57.3 %), Gram-positive rods (25.5 %), and Gram-positive cocci (17.2 %). The most prevalent coliforms from all types of the containers and milk were Escherichia coli spp. and Enterobacter spp. while the LAB were Lactobacillus spp. and Lactococcus spp. Therefore, smoking of milk-handling containers can be recommended as an effective method for disinfection of milk-handling containers and as a method of preservation of camel milk in the arid and semi-arid areas of Kenya, where the cold chain or processing infrastructure is poor.

Highlights

  • Camel milk production in Kenya is estimated at 937,000 tonnes in 2013, valued at about 11 billion Kenyan shillings (108 million US Dollars) (FAO 2016)

  • The County is located at coordinates 0° 21′ 0′′ north and 37° 35′ 0′′ east and an altitude ranging from 200 to 300 m above sea level (ASL) there are some areas in the County that go up to 1,000 ASL

  • There were significant differences (P < 0.05) in the microbial load between smoked surfaces and the chlorinedisinfected surfaces for total viable count (TVC), total coliform count (TCC), and lactic acid bacteria (LAB) (Table 1), indicating that smoking had an effect of reducing the microbial load on the surfaces just like chlorine disinfection

Read more

Summary

Introduction

Camel milk production in Kenya is estimated at 937,000 tonnes in 2013, valued at about 11 billion Kenyan shillings (108 million US Dollars) (FAO 2016). This quantity of milk represents about 19 % of the national Kenyan milk production (FAO 2016). It is estimated that 55 % of the total camel milk produced in Kenya is marketed, 35 % is for household use, and 10 % is consumed by the calf (Muriuki 2011). Of the remaining milk (88 %) that does not reach the market, 38 % is directly used by camel-keeping households and their herders as part of their food requirements and the remaining 50 % goes to waste (Musinga et al 2008)

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.