Abstract

Silver nanoparticles have attracted much interest from scientists to develop nanosilver-based disinfectant products due to their unique properties of high antimicrobial activity. This study focused on biosynthesis, characterization, antimicrobial and antibiofilm effects of silver nanoparticles against vegetative and starved Shigella strains. The silver nanoparticles were synthesized using the yeast Yarrowia lipolytica and characterized by ultraviolet–visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The antimicrobial and antibiofilm activities of silver nanoparticles were tested against the growth of vegetative and starved Shigella strains. After the addition of silver nitrate solution to the supernatant of Y. lipolytica, we noticed the appearance of a brown-black coloration that suggested the formation of silver nanoparticles. The presence of silver nanoparticles was manifested by a maximum absorption in the ultraviolet–visible range, precisely at the wavelength 420[Formula: see text]nm. The crystalline nature and the stability of silver nanoparticles were confirmed, respectively, by XRD and FTIR analysis. The antibacterial activity of silver nanoparticles showed significant toxicity on Shigella strains indicating that the starved cells were more sensitive to treatment with silver nanoparticles than vegetative cells. Surprisingly, the biofilm formation had not been inhibited by silver nanoparticles for both vegetative and starved cells. In conclusion, a new class of nanosilver containing disinfectant nanoproducts will be promising for advanced environmental treatments including air disinfection, water disinfection, surface disinfection and personal hygiene that will help to prevent the further outbreak of diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.