Abstract
Introduction: The antibiofilm activity of silver nanoparticles has been extensively investigated in common bacteria. Metallo-β-lactamase-producing Gram-negative bacteria are hard-to-treat microorganisms with few therapeutic options, and silver nanoparticles were not evaluated on the biofilm of these bacteria. Objectives: The aim of this study was to evaluate the antibiofilm activity of a bone scaffold impregnated with silver nanoparticles in NDM-producing Gram-negative bacilli. Methods: Bone scaffolds from bovine femur were used for the tests and impregnated with silver nanoparticles (50 nm) by physical adsorption. Silver nitrate minimal inhibitory and bactericidal concentrations (MIC and MBC) were performed on NDM-producing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Disc diffusion tests for silver nanoparticles’ susceptibility and the quantification of biofilm production on plate and bone with sessile cell count were performed. Results: The MIC results demonstrated that silver nitrate had an antimicrobial effect on all microorganisms, inactivating the growth of isolates from a concentration of 8 µg/mL. MBC results showed that E. coli 16.211 was the only isolate to present MIC that were different from MBC, with a value of 16 µg/mL. Conclusion: Bone scaffolds impregnated with silver nanoparticles can significantly reduce the biofilm of multidrug-resistant bacteria. This is a strategical material that can be used as bone implant in different clinical conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.