Abstract

An electrochemical biosensor based on the antifouling zwitterionic peptide hydrogel (CFEFKFC) and the poly(3,4-ethylenedioxythiophene) (PEDOT) was fabricated to accurately detect prostate specific antigen (PSA) in complex human serum. The electrode was modified with the conducting polymer PEDOT and gold nanoparticles (AuNPs) in sequence through electrodeposition, and then the designed zwitterionic peptide hydrogel prepared through self-assembly was immobilized onto the modified electrode surface via the Au–S bond. The zwitterionic peptide hydrogel with cysteine terminal is easy for immobilization onto the gold surface, and it is also suitable for the immobilization of biomolecules such as PSA antibody in this work, through the formation of covalent amide bonds. The peptide hydrogel possessed excellent antifouling property, and it was able to effectively prevent the adsorption of nonspecific proteins, cells and other biomolecules. The developed antifouling biosensor showed a linear response range from 0.1 ng mL−1 to 100 ng mL−1, with a low limit of detection down to 5.6 pg mL−1. These results encourage the wide use of zwitterionic peptide hydrogels as antifouling materials in various sensing and bio-sensing devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.