Abstract

Abstract Antifouling technologies have attracted considerable attention in recent years, as numerous fouling phenomena pertaining to inorganic, organic, bio-, and composite foulants substantially affect daily life. Poly(dimethyl siloxane) (PDMS) has several practical applications; however, it possesses limited resistance to inorganic, organic, or biofoulants such as proteins or bacteria. Among the antifouling strategies reported thus far, antifouling induced by surface wettability (AFISW) is an exceptional strategy with considerable potential. It presents numerous advantages such as a physical working mechanism, eco-friendliness, and facile material fabrication process. To achieve AFISW, PDMS can be modified with several nanomaterials to tune its surface wettability to meet antifouling requirements. This article presents a systematic review of the existing research on AFISW in PDMS to achieve improved antifouling performance. Specifically, we first provide a background on fouling, focusing on the different types of fouling and antifouling mechanisms. Then, we provide a comprehensive review of AFISW based on four types of surface wettability, namely, superhydrophilicity, hydrophilicity, hydrophobicity, and superhydrophobicity. Finally, we discuss suitable AFISW strategies for different types of fouling mechanisms based on PDMS and its nanocomposites. This review will help researchers design and fabricate various polymeric materials and their nanocomposites with tailored surface wettability for AFISW applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.