Abstract

Polyacrylonitrile/graphene oxide (PAN/GO) composite fibers with spindle-knot structure have been fabricated by facile electrospinning and then hydrolyzed (H-PAN/GO) for tailoring their chemical features, and their separation performance for oil-water is evaluated. Herein, bio-inspired spindle-knot structures are induced by the GO sheets, which may be attributed to the mismatch between GO size and fiber diameter and the strong interaction between PAN and GO. It is found that H-PAN/GO membrane with GO concentration at 7% (H-PAN/GO7%) is superhydrophilic in air and ultralow-oil-adhesion under water. As a result, the H-PAN/GO7% membrane exhibits ultra-high flux (~3500LMH), satisfied rejection ration (~99%) and outstanding flux recovery ratio (~99%) for separating oil-water emulsion. These outstanding separation performances mainly are attributed to the combination of chemical features of hydrolyzed PAN and spindle-knotted structure induced by GO. Moreover, self-transport of oil along spindle-knotted fiber under water is demonstrated by Lattice Boltzmann method (LBM) and the anti-fouling mechanism of this structure was also explained in this paper. The H-PAN/GO fibrous membrane offers a novel insight into fabricating next generation membrane to separate oil-water emulsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.