Abstract
A flame-retardant and hydrophobic coating was deposited on the surface of the cotton fabric via a two-step spray deposition technique. Specifically, the coating was composed of flame-retardant component (guanidine phosphate) and hydrophobic components (Ti-MOF and bis(3-aminopropyl)-terminated poly(dimethylsiloxane) (PDMS)) and crosslinked with glutaraldehyde. The limiting oxygen index (LOI) of the coated cotton fabrics increased from 18.0 % to 32.0 % (15#) and 26.5 % (15#-Ti-PDMS) relative to that of the original cotton fabric, and the coated cotton fabrics also self-extinguished in the UL-94 flammability test. Compared with that of the original cotton fabric, the PHRR of the coated fabrics was significantly lower, reaching 80 %. The coated cotton fabrics (15# and 15#-Ti-PDMS) had good antibacterial properties against Staphylococcus aureus (S. aureus). In addition, 15#-Ti-PDMS had high hydrophobicity, good washing and abrasion resistance and good water-oil separation performance. Its water contact angle was 146°. The water contact angle remained above 130° after 10 laundering cycles and 50 scratch cycles. Even under strongly acidic and strongly basic conditions, the water-oil separation efficiency of 15#-Ti-PDMS was greater than 99 %, and it was still greater than 90 % after 10 cycles. Therefore, a simple and effective method for preparing flame-retardant, hydrophobic and antibacterial cotton fabric was developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.