Abstract
We study the quantum phase transition from an antiferromagnetic metal to a heavy fermion metal in the Kondo lattice model. Based on the strong coupling approach we {\it first} diagonalize the Kondo coupling term. Since this strong coupling approach makes the resulting Kondo term {\it relevant}, the Kondo hybridization persists even in the antiferromagnetic metal, indicating that fluctuations of Kondo singlets are not critical in the phase transition. We find that the quantum transition in our strong coupling approach results from {\it softening of antiferromagnetic spin fluctuations of localized spins}, driven by the Kondo interaction. Thus, the volume change of Fermi surface becomes continuous across the transition. ......
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.