Abstract

The wing of a dragonfly is thin and light, but can bear high frequent alternating stress and present excellent antifatigue properties. The surface morphology and microstructure of the wings of dragonfly Pantala flavescens were observed using SEM in this study. Based on the biological analysis method, the configuration, morphology, and structure of the vein were studied, and the antifatigue properties of the wings were investigated. The analytical results indicated that the longitudinal veins, cross veins, and membrane of dragonfly wing form a optimized network morphology and spacially truss-like structure which can restrain the formation and propagation of the fatigue cracks. The veins with multilayer structure present high strength, flexibility, and toughness, which are beneficial to bear alternating load during the flight of dragonfly. Through tensile-tensile fatigue failure tests, the results were verified and indicate that the wings of dragonfly P. flavescens have excellent antifatigue properties which are the results of the biological coupling and synergistic effect of morphological and structural factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.