Abstract
Ab initio and hybrid density functional techniques were employed to characterize a surprising new class of H-bonded complexes between ions of like charge. Representative H-bonded complexes of both anion-anion and cation-cation type exhibit appreciable kinetic stability and the characteristic theoretical, structural, and spectroscopic signatures of hydrogen bonding, despite the powerful opposition of Coulomb electrostatic forces. All such "anti-electrostatic" H-bond (AEHB) species confirm the dominance of resonance-type covalency ("charge transfer") interactions over the inessential (secondary or opposing) "ionic" or "dipole-dipole" forces that are often presumed to be essential for numerical modeling or conceptual explanation of the H-bonding phenomenon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.