Abstract

Change in body weight is a frequent side effect of antidepressants and is considered to be mediated by central effects on food intake and energy expenditure. The antidepressant phenelzine (Nardil) potently inhibits both monoamine oxidase and semicarbazide-sensitive amine oxidase activities, two enzymes that are highly expressed in adipose tissue, raising the possibility that it could directly alter adipocyte biology. Treatment with this compound is rather associated with weight gain. The aim of this work was to examine the effects of phenelzine on differentiation and metabolism of cultured human and mouse preadipocytes and to characterize the mechanisms involved in these effects. In all preadipocyte models, phenelzine induced a time- and dose-dependent reduction in differentiation and triglyceride accumulation. Modulation of lipolysis or glucose transport was not involved in phenelzine action. This effect was supported by the reduced expression in the key adipogenic transcription factors peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and CCAAT/enhancer binding protein-alpha, which was observed only at the highest drug concentrations (30-100 microM). The PPAR-gamma agonists thiazolidinediones did not reverse phenelzine effects. By contrast, the reduction in both cell triglycerides and sterol regulatory element-binding protein-1c (SREBP-1c) was detectable at lower phenelzine concentrations (1-10 microM). Phenelzine effect on triglyceride content was prevented by providing free fatty acids to the cells and was partially reversed by overexpression of a dominant-positive form of SREBP-1c, showing the privileged targeting of the lipogenic pathway. When considered together, these findings demonstrate that an antidepressant directly and potently inhibits adipocyte lipid storage and differentiation, which could contribute to psychotropic drug side effects on energy homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.