Abstract
Calcium (Ca) and neodymium (Nd) were introduced in the AZ61 alloy as alloying elements. The microstructure, corrosion behavior, and discharge properties of AZ61-1Nd-xCa (x = 0, 0.5 wt.%, 1 wt.%, 2 wt.%) alloys as anodes for Mg-air batteries were systematically investigated. The results indicated that the AZ61-1Nd-1Ca alloy exhibits the best corrosion resistance during electrochemical experiments and hydrogen evolution tests. Discharge performance tests showed that the AZ61-1Nd-1Ca alloy exhibits the best specific capacity (1193.6 mAh g−1), energy density (1893.7 mWh g−1), anode efficiency (60.3 %), and cell voltage (1.246 V) at higher current densities. This is mainly attributed to the addition of Ca element, which refines the grain size of the alloy and increases the grain boundary area. In addition, Al2Nd and Al2Ca phases have similar corrosion mechanisms in the cross-section of the extruded alloy. The precipitated granular Al2Ca phase is uniformly dispersed on the substrate and acts as a physical barrier. This not only enhances the corrosion resistance of the alloy but also improves the anode efficiency of the alloy during discharge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.