Abstract

Properties of twenty five hydrogen-bonded complexes, namely, F− × (HF)n (n = 1–6), RF × (HF)n (R = t-Bu, i-Pr, Et, Me; n = 1–3), XF × (HF)n (X = H, Br, Cl; n = 1–2), and FF…HF with the hydrogen bond energy varying in a wide range have been calculated using ab initio methods at the MP2/6-31++G** level. For the first time, the energies, geometrical parameters and vibrational frequencies are obtained for the series of clusters, where the bonding character changes from covalent to van der Waals on the variation of proton-acceptor ability of the base, and the energies are in the range of 45–1 kcal/mol. The mutual influence of multiple hydrogen bonds of F…HF type in clusters, in which a fluorine anion or an atom participates in hydrogen bond formation as the acceptor, is systematically investigated. The relative changes in the values of the considered parameters on the sequential addition of an HF molecule (anticooperativity) were determined. It was shown that non-additivity of the interaction is most strongly pronounced in the energy and vibrational frequency values, geometrical parameters of hydrogen bonds are less sensitive to the mutual influence. The anticooperative effect is more pronounced on the hydrogen bridge length R(F...F) than on the geometry of proton donor r(HF). The hydrogen bond formation and the increase of the number n of ligands lead to successive lengthening of the r(XF) bond adjacent to the hydrogen bridge. The length of an XF bond changes stronger on formation of each hydrogen bond than the HF bond length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.